
0Harlequin RIP
Adding Spot Functions to the RIP
Technical Note Hqn027

June 2001

1 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

1 Adding spot functions1

It is possible to add new spot functions expressed as PostScript language pro-
cedures to the Harlequin RIP so that they appear on the spot function menus.
Such spot functions would be used in the PostScript Level 1 form of the set-
screen operator, and in Type 1 and 2 halftones in PostScript Level 2. Thresh-
old tables as used in Type 3, 4 and 6 halftones can also be adapted so that they
can also be made available on these menus.

2 Adding Type 1 spot functions
The RIP requires two or three pieces of information about each spot function,
depending on whether it appears on the Spot function menus or not:

• The spot function itself, as a PostScript language procedure2.

• An internal name. Where a previously unknown spot function is noted
in a job it will be added with an automatically generated internal name
of the form sf71885. If you are adding a name yourself then any valid
PostScript language name may be used.

• An external name. All spot functions which appear on the
Spot function menu in the Screening dialog of GUI versions of the
RIP will have an external name which is used in creating that menu.

To add a new spot function which you wish to appear on that menu, you
should follow the following steps. We recommend that you take backup
copies of all files which you edit before making any changes.

a. Add the spot function procedure to the file SW/Screens/sf.ps3, keyed to
the internal name. This file is read as a PostScript language file, and you
would typically want to add something similar to the following at the
end of the file. Do not delete or alter any existing HCS, HDS or HMS
entries in this file.

1. This tech note refers to the Harlequin RIP version 3.3 and later. Spot functions
cannot be added to version 3.2 or earlier.

2. See section 6.4.4 of the PostScript Language Reference Manual (2nd Ed) for full
details of PostScript language spot functions.

3. Mapped to SW\SCREENS\SF.PS when using 8.3 names on a PC RIP.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 2

/MySpot { abs exch abs mul 1. exch sub } bind def

The name and the spot function itself will obviously vary to match your
requirements. Both the bind and the def are required.

Note: The RIP should not be running while the sf.ps file is being edited,
and we recommend that you delete the file SW/Screens/SCREEN-
CACHESTRUCTS4 before restarting the RIP.

b. Add the external name to the file SW/Config/Screen names5, keyed to
the internal name . This file is read from both PostScript code and C
code, and you should be careful not to change the formatting (line ends,
indents etc.) while editing it.

• For RIP versions 3.2, 3.3 and 4.0 the file may well end up looking like
this – it will vary slightly depending on which HSL screen sets you
already have enabled, and of course, the internal and external spot func-
tion names which you select. Do not delete any existing HCS, HDS or
HMS entries in this file unless you wish to remove them from the Spot
function menu.
(Screening)
<<
 /SpotFunctionNames [
 [(HDS-A) (HDS Super F)
]
[(HDS-B) (HDS Fine)

]
[(HDS-C) (HDS Medium)

]
[(HDS-D) (HDS Coarse)

]
[(HDS-E) (HDS Super C)

]
[(MySpot) (My Spot Function)

]
]

>>

Both the internal (first) and external (second) names must be entered as
valid PostScript language strings.

4. Mapped to SW\SCREENS\SCREENCA.X00 when using 8.3 names on a PC RIP.
5. Mapped to SW\CONFIG\SCRNAMES when using 8.3 names on a PC RIP.

3 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

• For RIP version 4.1 the file may end up looking like the following:
/Screening
[

<<
 /InternalName (Round)
 /ExternalName (Round)
 /Enabled true
 >>

 <<
 /InternalName (Euclidean)
 /ExternalName (Euclidean)
 /Enabled true
 >>

[... Many lines omitted ...]

 <<
 /InternalName (HMS Elliptical1)
 /ExternalName (HMS Elliptical1)
 /Enabled false
 >>

 <<
 /InternalName (HCS)
 /ExternalName (HCS)
 /Enabled false
 >>

 <<
 /InternalName (MySpot)
 /ExternalName (My Spot Function)
 /Enabled true
 >>

]

The value of /Enabled specifies whether the entry will appear on the Spot
Function menu, thus the HDS/HCS/HMS entries may well be set to false.
You must set /Enabled to true for your new spot function to appear on the
menu.

Note that the Screen names file will not exist in the SW/Config directory until
the RIP has been run at least once. If you wish to ship a RIP with a new spot
function already in place then you can add an appropriate Screen names file
in advance.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 4

The internal spot function name must match exactly between the two files,
including upper/lower casing – in these examples it’s MySpot. Note that the
name is used as a PostScript language literal name (including the ‘/’ charac-
ter) in the sf.ps file, and as a string in the Screen names file.

Threshold table screens
The technique described above can only be used for spot functions expressed
as procedures and as used in Type 1 and 2 halftones or Level 1 style set-
screen calls. Threshold table screens, normally defined as Type 3, 4 or 6 half-
tones6, can only be added after conversion to Type 1 style.

In many cases the RIP will process Type 1 halftones more efficiently than Type
3 or 6, but only square threshold tables (i.e. where the height is the same as the
width) will give the same results before and after conversion. Conversion to
the Type 1 form will also allow access to HPS and the RIP’s extra grays func-
tionality.

Probably the easiest way to perform the conversion is to write a halftone
resource file7, saved in SW/halftones. The spot function to be used should
select values from a look-up table.

In the example below each hex string in the values array includes the data
for a single row in the look-up table. The Frequency and Angle parameters are
selected to ensure that a single device pixel maps onto a single entry in the
look-up table. The SpotFunction procedure selects values from the table as
required.

Note the use of defineop – a Harlequin extension, used in this case to simplify
the spot function itself so that it will be cached in the sf.ps file. Some of the
details of this code are quite critical, because the SpotFunction matching
depends on the effects of binding etc. We would recommend that you don't

6. For details of Type 3 and 4 halftones see section 6.4.5 of the PostScript Language
reference Manual (2nd Ed). Type 6 halftones are described in section 8 of the
Harlequin RIP Extensions guide, and in the PostScript Language Reference Man-
ual Supplement for versions 2012 and later.

7. See the PostScript Language Reference Manual (2nd ed.), section 3.9 (especially
3.9.2 and 3.9.4) for details of halftone resource files.

5 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

change the SpotFunction definition in any way. If you wish to develop the
function further then any adjustments should be made to the single procedure
in the dictionary passed to defineop.

Note also the use of immediate evaluation (//) in several places. In order to
add the spot function into the sf.ps file it must be completely self-contained,
i.e. it must not include references to other values from the halftone dictionary.

One final point is that the halftone name is defined only once (apart from the
%%BeginResource comment). This is to make it easy to ensure that all instances
of the name match exactly.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 6

%!PS-Adobe-3.0
%%Title: MyHalftone
%%EndComments
%%BeginResource: halftone MyHalftone

currentglobal false setglobal
8 dict begin

/HTName /MyHalftone def

/width 47 def /height 47 def
/values [
<3335363A3E3A3A363B39363C3F3C3E4039363C413F41403E393E403E3A39
3A3E40424243414240413A3D434444454>
<3535393C38393C3937383C3D393D3C3C3B383A3D3A373C3A3B3F3D444140
393A3A3D413E403D41423E403E3F41424>

... 44 additional hex strings omitted ...

<323232353A3233333332333633353534353635383338353233333133343A
373735373739393C3634383D3E393A3D3>
] def
/Frequency
 currentpagedevice /HWResolution get aload pop
 1 index ne {
 % we can only run this at square resolutions
 /Halftoning errordict /rangecheck get exec
 } if
 width div
 def

/Angle 0 def

<<
//HTName {

1 add //height mul 2 div cvi
exch
1 add //width mul 2 div cvi
exch
//values exch get exch get 256 div

} bind
>> 1183615869 internaldict begin defineop end

/SpotFunction { //HTName load exec } def

/HalftoneType 1 def

7 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

//HTName

{ /values /width /height /HTName }
{ currentdict exch undef } forall

currentdict end

/Halftone defineresource pop
setglobal

%%EndResource

Once you have created and debugged such a halftone resource file, you can
add it to the sf.ps file by processing a PostScript language file which uses it
and which draws in a tint of that halftone. Something as simple as the follow-
ing would do:

/MyHalftone /Halftone findresource
sethalftone
0.5 setgray
clippath fill
showpage

Now quit the RIP and examine the SW/Screens/sf.ps file. The spot function
will have been added to the end of that file with an automatically generated
internal name – something like sf71871. You can change the internal name
by editing the file if you wish.

You can also add the spot function to the Screen names file if you want it to
appear on the RIP’s menus. If you do that , you MUST change the spot func-
tion that has been included in sf.ps. It will initially appear as:

{ /MyHalftone load exec }

you must change it to:

{
/MyHalftone dup
where { pop }{ dup /Halftone findresource pop } ifelse
load exec
}

(the line breaks are not important). If you do not make this change you will
probably see undefined errors with an offendingcommand of load.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 8

The example code given above is for a small look-up table, only 47 values high
and wide, but there is no reason why very large tables, such as those which
would require the use of a Type 6 halftone rather than a Type 3 may not be
treated in an identical way.

It would be possible to include data with more than 8 bits per pixel by appro-
priately extending the look-up table and adjusting the SpotFunction proce-
dure. It might also be desirable to fine tune the selection code in that
procedure to avoid patterning caused by rounding errors at the edges of the
halftone cell. Such refinements are left to the individual developer – this docu-
mentation is intended only as a guide to what is possible within the RIP.

Selecting halftones from front end computers
Having added a spot function as described above it will be visible within the
RIP’s dialogs. You may wish to allow it to be selected from a front end applica-
tion as well, either by entering some PostScript code into a custom screening
dialog (e.g. in Adobe PhotoShop), or by selection from a dialog generated
from a PPD file (e.g. when using LaserWriter 8.3 on a Macintosh).

If the spot function started off as a threshold table and you followed the sug-
gestions above you will already have a halftone resource file. The PostScript
code required to select the screen would be:

/MyHalftone /Halftone findresource sethalftone

If the spot function was originally a procedure you can add a simple halftone
resource file8 which can be selected from the front end in a similar way. Such a
file might be:

8. See the PostScript Language Reference Manual (2nd ed.), section 3.9 (especially
3.9.2 and 3.9.4) for details of halftone resource files.

9 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

%!PS-Adobe-3.0
%%Title: MyHalftone
%%EndComments
%%BeginResource: halftone MyHalftone

currentglobal false setglobal
32 dict begin
/globalness exch def

/HalftoneType 1 def
/SpotFunction { abs exch abs mul 1. exch sub } bind def
/Angle 45 def
/Frequency 120 def
currentdict
end

(MyHalftone) cvn exch /Halftone defineresource
/globalness get setglobal

%%EndResource

In this case, you would probably also want to set the screen frequency and
angle from the front end as well, in which case the PostScript code to set the
screen would be something like:

150 45 /MyHalftone /Halftone findresource setscreen 9

Resource files of this form are supplied with RIP version 4.0 and later for HCS,
HDS and HMS screens.

Once a spot function has been added to the Screen names file, it is also possi-
ble for front end code, e.g. from a PPD , to select the spot function to override
all subsequent screening requests in the file in the same way as would be done
on the page setup dialog in the RIP itself, by defining the
OverrideSpotFunctionName system parameter to match the internal spot
function name:

9. By default the Harlequin RIP will take note of screen frequency and angle parame-
ters used in a call to setscreen in conjunction with a Type 1 halftone dictionary, but
see also the description of the UseAllSetScreen system parameter in the the
Harlequin RIP Extensions guide, section 8.5.3.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 10

<<
/OverrideSpotFunctionName (MySpot)
/Password 0

>> setsystemparams

Using Type 3 halftones as Type 3
The one disadvantage of converting Type 3 halftones to Type 1 as described
above is that you need to enter the correct screen angle and frequency when
selecting the spot function in the RIP. The angle should be set to 0°, and the
frequency to (resolution/width). In the Separations dialog it is also necessary
to select different spot functions for different color separations in order to
avoid patterning caused by reinforcement between the plates.

If you feel that those limitations are too restrictive, the following technique
may be used to select Type 3 halftones on the Separations dialog instead.

a. Create a Type 3 or 6 halftone resource file for each process color plate.
You may wish to create additional halftones for specific spot colors, or
for a generic ‘Default’ case. These files should be of the following form.
This example has a trivially simple Thresholds array – any real-world
halftone would be considerably larger.

11 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

%!PS
%%Title: Type3Yellow
%%EndComments
%%BeginResource: halftone Type3Yellow

currentglobal false setglobal

/Type3Yellow <<
 /HalftoneType 3
 /Width 4
 /Height 4
 /Thresholds <102030405060708090a0b0c0d0e0f0ff>
 /TransferFunction {}
>> /Halftone defineresource pop

setglobal

%%EndResource

b. Create a separation feature along the lines of the following. Separation
features are similar to page features in that they are simply PostScript
code fragments run at the start of a job. Save the code in a file in the
SW/Separation features10 directory.

10. Mapped to SW\SEPFEATS when using 8.3 names on a PC RIP.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 12

%!PS
%%Title: Type3 Screening
%%EndComments

% This code examines the Type 5 halftone created by the code
managed by
% the separations dialog in the RIP, and replaces subsidiary
halftone
% dictionaries with selected Type 3 halftones.
% It also turns HPS off.

% Turn off HPS:
<<
 /AccurateScreens false
 /Password 0
>> setsystemparams

% List of halftone resources for each process color.
% Use the /Default for all colors not in this list.
/Type3HalftoneList <<
 /Cyan /Type3Cyan
 /Magenta/Type3Magenta
 /Yellow/Type3Yellow
 /Black/Type3Black
 /Default/Type3Spot
>> def

/ht
currenthalftone dup length 1 add dict begin
 {

dup type /dicttype eq{
 dup /HalftoneType known {
 % A halftone dictionary for which a
 % separation is required
 pop
 //Type3HalftoneList 1 index 2 copy known {
 get

} {
pop pop

 //Type3HalftoneList /Default get
 } ifelse
 /Halftone findresource def
 } { def } ifelse
 } {

1 index /Override eq { 10 mul } if
 def
 } ifelse

13 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

} forall

currentdict end def

<<
 /Install
 [currentpagedevice /Install get /exec load /ht load
/sethalftone load]
 cvx bind
>> setpagedevice

[/ht /Type3HalftoneList] currentdict exch undef

%%EOF

Once the files have all been set up, you can select the separation feature from
the Custom menu on the Separations dialog when you want to use your Type
3 halftones. The spot function, frequency and angle entries in the list of sepa-
rations on that dialog will be ignored, but the names of all separations, and
whether those separations are to be produced will be honored.

The separation feature as listed above will also override the setting of the HPS
checkbox on the Separations dialog - ensuring that HPS is always turned off. If
you want to use HPS with your Type 3 screens simply remove that section of
the code.

The list of halftones to be used can be adjusted by changing the
Type3HalftoneList array, e.g. to include screens for specific spot colors, or to
use Type3Black for Default etc.

If you wish to add more than one set of Type 3 halftones in the same way you
can create several separation features, each with a different
Type3HalftoneList definition.

Removing standard spot functions
Harlequin RIP version 4.1 and later allow you to suppress standard, built-in
spot functions. Each entry in the SW/Config/Screen names file comprises a
dictionary which includes values for InternalName and ExternalName as
described above. There is also a value named Enabled. To remove any spot
function from the menu just set this value to false.

2 Adding Type 1 spot functions

Technical Note Hqn027: v1.5 June 2001 Commercial in Confidence 14

It is not possible to remove built-in spot functions in RIP version 4.0 or earlier.

Change history

v 1.1 96.01.19 Added section on using Type 3 half-
tones as Type 3

v 1.2 96.04.10 Corrected sample code for Type 3 to
Type 1 halftone conversions. The ear-
lier sample code would not produce a
spot function which would be cached
in sf.ps

v 1.3 96.04.15 Added notes on the format of the
Screen names file in ScriptWorks
4.0r4 and later. Added note on the
possibility of suppressing standard
spot functions in the Spot Function
menu in version 4.0r4 and later

v 1.4 96.10.09 Correct notes to avoid undefined
errors on load if a spot function is
selected from the menu on the
screening dialog.

v 1.5 2001.06.14 Updated cover page and copyright
page.

Removed references to ScriptWorks
and replaced with Harlequin RIP.

No other changes made to text.

15 Commercial in Confidence Technical Note Hqn027: v1.5 June 2001

Copyright © 1992–2001 Global Graphics Software Limited.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without the prior written permission of Global Graphics Software Limited.

The information in this publication is provided for information only and is subject to change
without notice. Global Graphics Software Limited and its affiliates assume no responsibility or
liability for any loss or damage that may arise from the use of any information in this publica-
tion. The software described in this book is furnished under license and may only be used or
copied in accordance with the terms of that license.

ScriptWorks is a registered trademark and Harlequin, the Global Graphics Software logo,
EasyTrap, FireWorks, FlatOut, Harlequin Color Management System, HCMS, Harlequin RIP,
Harlequin Color Production Solutions, HCPS, Harlequin Color Proofing, HCP, Harlequin Full
Color System, HFCS, Harlequin ICC Profile Processor, HIPP, Harlequin Standard Color System,
HSCS, Harlequin Chain Screening, HCS, Harlequin Dispersed Screening, HDS, Harlequin
Micro Screening, HMS, Harlequin Precision Screening, HPS, Harlequin Screening Library, HSL,
Harpoon, RipFlow, ScriptWorks MicroRIP, ScriptProof, ProofReady, SetGold, Scalable Open
Architecture RIP, SOAR, TrapMaster, TrapWorks, PDF Creator and RIPFlow are all trademarks
of Global Graphics Software Limited.

Portions licensed under U.S. Patents: Nos. 4,500,919, 4,941,038 and 5,212,546. EasyTrap is
licensed under one or more of the following U.S. Patents: Nos. 5,113,249, 5,323,248, 5,420,702,
5,481,379.

Adobe, Adobe Photoshop, Adobe Type Manager, Acrobat, Display PostScript, Adobe Illustra-
tor, PostScript, Distiller and PostScript 3 are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries which may be regis-
tered in certain jurisdictions.

Global Graphics Software Limited is a licensee of Pantone, Inc. PANTONE® Colors generated by
ScriptWorks are four-color process simulations and may not match PANTONE-identified solid
color standards. Consult current PANTONE Color Publications for accurate color. PANTONE®,
Hexachrome®, and PANTONE CALIBRATED™ are trademarks of Pantone, Inc. © Pantone, Inc.,
1991.

Other brand or product names are the registered trademarks or trademarks of their respective
holders.
US Government Use
The ScriptWorks software is a computer software program developed at private expense and is subject to the following
Restricted Rights Legend: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set
forth in (i) FAR 52.227-14 Alt III or (ii) FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is
subject to Global Graphics Software’s customary commercial license as contained in the accompanying license agreement,
in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be deemed to be `unpublished’ and
licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States. Global Graphics Soft-
ware Incorporated, 95 Sawyer Road, Waltham, Massachusetts 02453.”

