Harlequin RIP

The Harlequin Extended Error
Handler

Technical Note Hqn017
| October 2006

@ GLOBAL GRAPHICS

1 Introduction

Most versions of the Harlequin RIP have access to a text-based standard
output channel, and a large proportion of copies of the RIP are used for high
resolution output where extended error reporting on the output medium is
not a desireable option. Harlequin have therefore released an extended error
handler which shows all its results by default on the standard output channel.
The information reported is sufficient to allow a PostScript programmer to
isolate most problem code as rapidly as possible, and there are some configu-
ration switches to change the amount of information reported.

It is assumed that the reader will be familiar with PostScript language pro-
gramming, and with the normal error handling procedure in a PostScript
interpreter (as described on pages 100-101 of the PostScript Language Refer-
ence Manual (second edition)).

The error handler is shipped with RIP version 3.2 revision 27 and later, and
with RIP version 3.3 revision 6 and later.

2 Using the error handler

In most cases the most efficient method of using the error handler is by install-
ing it in a page feature. Two sample page features which show long and short
format reports are included as sw/Page Features/Examples/Error Handler
- Long and ~Short (SW\PAGEFEAT\EXAMPLES\ERRLONG and ERRSHORT on
FAT-based machines). Obviously these cannot be used as they stand to debug
problems with other page features; to do that similar code could be added to a
file run at RIP start-up, or into the top of the problem page feature.

3 What’s in the procset?
The procset itself contains four procedures:
dict LoadErrorHandler -

Installs the error handler and configures it according to values supplied in the
dictionary. Configuration options are described below.

— QuickErrorHandler -

Installs the error handler with default options for short-form reports.

Commercial in Confidence

4 Configuration

— FullErrorHandler -
Installs the error handler with default options for long-form reports
— ClearErrorHandler -

Removes the error handler if it is already installed.

4 Configuration

Current configuration options are:

longErrorReport
A boolean which should be true if a complete stack
report is required or false if only the top few items on
the operand stack should be displayed and reporting of
dictionary, execution and file stacks should be sup-
pressed.

fullDictReport
An integer which defines the largest dictionary which
will be fully reported if its name cannot be determined.
See the description of the operand stack in the error
handler report below for more information.

HgnShowOperand
HgnShowDictionary
HgnShowExecution
HgnShowFiles

Set these to true to show or false to disable the indi-
vidual stack information reports.

Default: true
HgnShowFollowing

If positive, show the following lines section in the file stack with this
number of bytes.. Set to 0 to suppress that section.

Default: 512

Commercial in Confidence 2

HgnShowStrings

Set the maximum length of strings (in bytes) to show in
the operand stack. Any string over this length will be
truncated and displayed with '. . ." after it. Use -1 for
no limit.

Default: 128

HgnShowSubStrings

Set the maximum length of strings (in bytes) to show in
for strings inside arrays or in the dictionary stack list

Default: 64

Set how various classes of characters should be shown in strings:

HgnNormalChars

Normal ASCIT' (<20>-<FE>)

Default: raw

HgnPrintControls

‘Useful' control bytes (BT, CR, LF)

Default: raw

HgnControlChars

HgnHighByte

HgnUTF8

Other low-byte characters (<00>-<1F> and <7F>,
excluding HT, CR and LF)

Default: allhex

High-byte characters (<80>-<FF>) in non-UTF-8-com-
pliant strings.

Default: raw

High-byte characters (<80>-<FF>) in UTF-8-compliant
strings.

Default: hex

Commercial in Confidence

4 Configuration

Values of each should be:
raw Just show the character for that byte in the current font.
dot Replace with a dot ('.")
oct Report in octal with a leading "\' character
hex Report as a block of two hex digits, surrounded by '<'
and ">'
allhex The whole string should be shown as a hex string if any

relevant bytes occur.

In addition, the following may be used only for HqnUTF8

unihex Convert multi-byte UTF-8 sequences to a unicode code
point, and report that as a block of 4 hex digits, sur-
rounded by '<' and '>".

Additional otions are:

HgnResolvedDF If the string provided matches the host-server file name
of a file submitted through the JDF Enabler, it will be
replaced by the URL supplied in the JDF, prefixed with
"T:" when this is true.

Default: true

HgnResolveURLPercent
If the string contains any 3-byte sequences matching the
percent escape used in URLs (for example, "%20" for a
space) they will be resolved to the referenced byte value
before display, and the string will be prefixed with "P:"
if this is true.

Default: false

Commercial in Confidence 4

HgnShowArrays

Set the maximum number of bytes to show of Arrays in
the operand stack. Any array (executable or literal) over
this length will be truncated and displayed with "..."
after it. Use -1 for "no limit"

Default: 768

HgnShowDictArrays

HgnShowExecTop

Set the maximum number of bytes to show of Arrays in
the dictionary stack list and in dicttionaries in the oper-
and list:

Default: 256

HgnShowExecBase

The top and bottom of the execution stack are usually
suppressed because they do not provide valuable infor-
mation. Occasionally, the determination of where the
relevant portion of the stack is can be incorrect. These
switches allow the whole execution stack to be shown.

Default: false

These options must be passed to a call to LoadErrorHandler in the preceding
dictionary.

In addition the recordstacks entry in the $error dictionary will be acted on.

If the print operator has been re-defined then output may be redirected to
other text channels, or even printed on the output medium if required. Such
re-definitions must be done using shadowop in order to act on the bound
instances of print in the error handling routines.

Commercial in Confidence

5 The error handler report

5 The error handler report

An example long-format report is shown below. As you can see it is divided
into a header, and then reports on the operand, dictionary, execution and file
stacks. The stack information will not be reported if recordstacks in $error
is false, or if the error was VMerror. The entire error handler report will be sup-
pressed if the error was interrupt.

This example is from a PostScript file which was deliberately changed to trig-
ger an error.

Commercial in Confidence 6

kkkkkkkkkkkkkk*k** ERROR HANDLER REPORT (Long format)
khkkkhkkkhkkhkkhkhkhhkk

ERROR: /undefined

OFFENDING COMMAND: wibble

CONFIG INFO: []

CURRENTGLOBAL: false

VMSTATUS: 3 405764 2826432

CTM: [8.33333 0.0 0.0 -8.33333 -0.0 6600.0 1]
CURRENT FONT: (W-R+L) "Courier" DLD1 [10.0 0.0 0.0 -

10.0 0.0 0.0]

OPERAND STACK: 4

****%(0: (realtype) 27.6667

**%*] . (booleantype) false

****2: (integertype) 0

**%%3: (dicttype) (W+R+L) wuserdict(length 71 / max 256)

DICTIONARY STACK: 6
**%%0: (W+R+L) statusdict(length 146 / max 200)
**k*k*x]1: (W+R+L) UNKNOWN DICT - <<
*** xpgA - 0.166667
**%* xpct2 - ()
**% xprh - {xpfg 6 0 --put-- xpih --aload-- --pop-- --setdash-
-}
*** getpageparams - {letter xppop2 0 --exch-- 792 --sub-- --
neg-- --translate-- --pop-- }
%% xppopcolor - {xpcustmprsnt {xppop2 } {xpcmykprsnt {xppop4
} {--pop-- } --ifelse-- }
--ifelse-- }
* kk o o o = o o o
>> - (length 202 / max 300)
*%%%2: (W+R+L) md(length 223 / max 270)
*%%*3: (W+R+L) userdict(length 71 / max 256)
**%%%4: (W+R+G) globaldict(length 2 / max 128)
**%*%5: (W-R+G) systemdict(length 378 / max 512)

EXECUTION STACK: 4
**%x%0: {1080 1584 0 1 setpageparams {} settransfer --end-- pxs pys

--scale-- ppr --aload-- --pop-- por {--pop-- --exch-- --neg-- --
exch-- --translate-- --pop-- } {--translate-- --pop-- --pop-- 270
--rotate-- } --ifelse-- 1 -1 --scale-- }
%%]:{{--newpath-- --clippath-- --mark-- {--transform-- {--
itransform-- --moveto-- } } {--transform-- {--itransform-- --
lineto-- } } {6 -2 --roll
-- --transform-- 6 -2 --roll-- --transform-- 6 -2 --roll-- --
transform- -

{--itransform-- 6 2 --roll-- --itransform-- 6 2 --roll-- --

Commercial in Confidence

5 The error handler report

itransform- -

6 2 --roll-- --curveto-- } } {{--closepath-- } } --pathforall-- -
newpath-- --counttomark-- --array-- --astore-- /gc xdf --pop-- }
- -exec

--)
**x%2:file: "%EP12Quadra950%ErrorJob.PS"
**%*3:--stopped- -

FILE STACK:
*%%x% . W3EP12Quadra950%ErrorJob.PS" - realfile, open, line: 507,
byte: 24642
**FOLLOWING LINES:
%%EndDocumentSetup
%Page: ? 1

o°

0 0 gm

(nc 0 0 1584 1080 6 rc)kp
0.64314 0 0.24705 setrgbcolor
1 1 xppen

0 xps

Job Not Completed: HX3fx; document: MT class page

The header contains a few details about the error itself and the current state of
the interpreter.

The configuration info will almost always be simply [1.

Currentglobal, vistatus and CTM are as returned by the currentglobal,
vmstatus and currentmatrix operators.

The current font is reported by name, font type, access and its scaleMatrix
entry, which may be used to determine its size, and rotation and any shearing
etc. The access information is displayed in a standard format which will be
used throughout the report:

The first element describes whether the dictionary is write protected or not,
W- means it is write-protected, W+ means that it can be written to.

The second element describes whether the dictionary is readable or not, using
R+ and R- in the same way as for write-protection.

The third element describes whether the dictionary is in local or global VM —
L means local and G means global.

Commercial in Confidence 8

Thus the (W-R+L) access in the example above means that the font dictionary
is write protected, but may be read and is in local VM.

The operand stack describes the elements which were on the operand stack
when the operator which caused the error was called. The **** is present
simply to allow the start of each operand to be found easily when some of
them are rather long, as they can be if they are arrays or PostScript language
procedures. The numbers immediately after the asterisks record the position
in the operand stack — 0 is the top of the stack.

The value and type of each object is then reported , together with additional
details depending on the type.

The access (write protection, read protection and globalness) is reported for all
compound objects (arrays, procedures, strings, dictionaries) as described
above for the current font.

Where possible the lengths of arrays, procedures and strings are reported. The
lengths and maximum lengths of dictionaries are shown. If any compound
object is read-protected then these are omitted.

Wherever possible the names of dictionaries are determined as the job is inter-
preted, but in some cases the dictionary is not named at all (e.g. the job con-
tained something of the form of 6 dict begin), or the name of the dictionary
cannot be intercepted. In these cases the dictionary is reported as an UNKNOWN
DICT and the first few items of the dictionary are listed to allow some
attempt at identification to be made. The items are obtained by a call to the
PostScript language forall operator, which means that their selection may
vary from time to time when the job is run. The maximum number of entries
to be reported is defined by fullbictReport as described above. The default
value for long format reports is six, meaning that any dictionary containing
six or fewer values will be reported in full. If the dictionary contains more
than six items then five will be reported, followed by “... - ...”.The
format for items within the unknown dictionary simply shows the name and
value of each item. An example of how an unknown dictionary is displayed is
shown above in the dictionary stack part of the report.

Commercial in Confidence

5 The error handler report

The dictionary stack shows the dictionaries which were open at the time the
offending command was called. The dictionary reported first was the top on
the stack. The format of these reports follows that described above for the
operand stack except that the type field is omitted because all entries are
assumed to be dictionaries.

The execution stack shows those operators, files, procedures and parts of pro-
cedures which were queued for execution when the error occurred. The stack
is automatically truncated so as not to show parts of the full stack which are
within the error handler itself or in the server loop. Those parts will not be rel-
evant to determining the cause of a problem in a job or page feature. The trun-
cation used will always ensure that the final entry is the s topped operator
from the server loop.

The file stack shows all the files in the execution stack in more detail. The type
of each file is reported, together with whether it is open or closed and the line
and byte within the file to which it had been read when the error occurred.
File type may be:

realfile — opened with the file operator on an ordinary device.

editfile — either %1ineedit% or %statementedit%. This will only ever been
seen while running the executive.

filterfile — opened with the filter operator.

stdfile — the file is open on one of the pseudo-devices %stdin%, %stdout% or

%stderrs.

The next 128 characters after the point to which the interpreter had read the
file are then displayed if the file is open and not an editfile.

An equivalent short format report would resemble the following.

Commercial in Confidence

10

11

*x%kkkkkkkkk*k*%%% ERROR HANDLER REPORT (Short format)
khkkkhkkkhkkkhkkkkkkkk

ERROR: /undefined

OFFENDING COMMAND: wibble

OPERAND STACK: 4

****%(0: (realtype) 27.6667
%] . (booleantype) false
*%**2: (integertype) 0

FILE STACK:
*%%x% ;. WxEP12Quadra950%ErrorJob.PS" - realfile, open, line: 507,
byte: 24668
**FOLLOWING LINES:
%EndDocumentSetup
%Page: ? 1

0 0 1584 1080 6 rc)kp
4314 0 0.24705 setrgbcolor

Xppen

0 xps
Job Not Completed: HX3fx; document: MT class page

.

0
1
0
c
6
1

In the default short format report the header is reduced to the error and the
offending command. Only the first three items on the operand stack are
shown, and the dictionary and execution stack are completely suppressed.
Only the first file in the file stack is reported.

6 Interpreting the report

The first step in using the error report will usually be to determine the point in
the file that the interpreter had reached when the error occurred. Both the line
and the byte reported in the file stack are those to which the interpreter had
read the file when the error occurred; it is entirely possible, indeed highly
probable, that the cause of the error is not at that point in the file, but finding
which procedure is called at that point may well be of assistance in further
investigations.

The line number reported takes note of all line end formats which are valid in
a PostScript language file (line feed, carriage return or carriage return/line
feed), not including those within binary data. If a file contains mixed line ends

Commercial in Confidence

6 Interpreting the report

or images in binary format then line numbers in a text editor may not coincide
with the numbers reported here. It is often easiest to find the correct place in
the file by searching for the code which is reported as immediately following
the error. In the example file we can find only one such section:
T T O O 1584 1080 0 0 1584 1080 100 72 72 1 FF F F T T T F psu
(HX3fx; document: MT class page)jn
0 mf
d
%%EndDocumentSetup
%Page: ? 1
op
0 0 x1
1 1 pen
0 0 gm
(nc 0 0 1584 1080 6 rc)kp
0.64314 0 0.24705 setrgbcolor
1 1 xppen
0 xpsg
64 xpgr

[¢]

o°

The error report shows that the next token to be read from the file is op on a
line of its own. Thus the error will probably have occurred during the execu-
tion of od, just before the comments. If any comment parsing is in effect then
it’s possible that parsing the %%EndDocumentSetup oOr %%Page: comments
could have triggered the error.

Whilst most programmers will use their own techniques, and different tech-
niques may prove most appropriate for different errors, a productive next step
is often to search for code matching that reported as the top item in the execu-
tion stack. In this instance we can find:

Commercial in Confidence 12

/xpappendod{bind /xpappndary 4 array def xpappndary 2 3 -1 roll
put
xpappndary 0 [/od load /exec load] putinterval xpappndary 3
[/exec load] putinterval
/od xpappndary cvx storeldef
{statusdict begin
userdict 0 false 27.66666 wibble
1080 1584 0 1 setpageparams {}settransfer end
pxs pys scale ppr aload pop por
{pop exch neg exch translate pop}
{translate pop pop 270 rotate}ifelse 1 -1 scale
}xpappendod

The offending command in the error handler report was wibble, and the top
entry in the execution stack report matches the code immediately following
the wibble in this piece of code. In addition the code immediately preceding
it will leave items on the operand stack which match the report. Finally it
appears that the code in question is being added to the end of an existing pro-
cedure named od, which ties back to the position to which the interpreter had
read the file. It would appear that we have found the code which triggered the
error.

This example is a very simple one, where at least the final cause of the prob-
lem could be found rapidly and easily. In many cases considerably more
detective work is required — even here we would have to ask why wibble was
undefined and yet used in the code.

Other techniques such as trace emitted to the System Monitor by debugging
code added to the job which reports the value of specific variables, or uses
pstack to show the current state of the stack may obviously be used to sup-
plement the information obtained from the error handler.

Once the problem has been found it may also be necessary to correct it, but
that is not an area within the scope of this document.

Commercial in Confidence

6 Interpreting the report

Change history

v1.0 94.11.21 Created
vi1A1 2001.06.12 Updated cover page and copyright
page.

Removed references to ScriptWorks
and replaced with Harlequin RIP.

No other changes made to text.

vi1.2 2006.10.04 Minor corrections. Copyright updated.

Commercial in Confidence 14

15

Commercial in Confidence

6 Interpreting the report

GLOBAL GRAPHICS®

Copyright and Trademarks

Harlequin RIP: Hqn017 Extended Error Handling

Document issue: 104

Copyright © 2006 Global Graphics Software Ltd. All rights reserved.

Certificate of Computer Registration of Computer Software. Registration No. 20065R05517

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, with-
out the prior written permission of Global Graphics Software Ltd.

The information in this publication is provided for information only and is subject to change
without notice. Global Graphics Software Ltd and its affiliates assume no responsibility or lia-
bility for any loss or damage that may arise from the use of any information in this publication.
The software described in this book is furnished under license and may only be used or copied
in accordance with the terms of that license.

Harlequin is a registered trademark of Global Graphics Software Ltd.

The Global Graphics Software logo, the Harlequin at Heart Logo, Cortex, Harlequin RIP, Harle-
quin ColorPro, EasyTrap, FireWorks, FlatOut, Harlequin Color Management System (HCMS),
Harlequin Color Production Solutions (HCPS), Harlequin Color Proofing (HCP), Harlequin
Error Diffusion Screening Plugin 1-bit (HEDS1), Harlequin Error Diffusion Screening Plugin 2-
bit (HEDS2), Harlequin Full Color System (HFCS), Harlequin ICC Profile Processor (HIPP),
Harlequin Standard Color System (HSCS), Harlequin Chain Screening (HCS), Harlequin Dis-
play List Technology (HDLT), Harlequin Dispersed Screening (HDS), Harlequin Micro Screen-
ing (HMS), Harlequin Precision Screening (HPS), HQcrypt, Harlequin Screening Library (HSL),
ProofReady, Scalable Open Architecture (SOAR), SetGold, SetGoldPro, TrapMaster, TrapWorks,
TrapPro, TrapProLite, Harlequin RIP Eclipse Release and Harlequin RIP Genesis Release are all
trademarks of Global Graphics Software Ltd.

Protected by U.S. Patents 5,579,457; 5,808,622; 5,784,049; 5,862,253; 6,343,145; 6,330,072;
6,483,524; 6,380,951; 6,755,498; 6,624,908; 6,809,839.

Other U.S. Patents Pending

Protected by European Patents 0 803 160; 0 772 934; 0 896 771; 672 29 760.8-08.
Portions licensed under U.S. Patent No. 5,212,546; 4,941,038.

TrueType is a registered trademark of Apple Computer, Inc.

The ECI and FOGRA ICC color profiles supplied with this Harlequin RIP are distributed with
the kind permission of the ECI (European Color Initiative) and FOGRA respectively, and of
Heidelberger Druckmaschinen AG (HEIDELBERG).

The IFRA ICC profiles supplied with this Global Graphics Software are distributed with the
kind permission of IFRA and of GretagMacbeth.

International Cooperation for Integration of Processes in Prepress, Press and Postpress, CIP4,
Job Definition Format, JDF and the CIP4 logo are trademarks of CIP4.

Commercial in Confidence 16

17

Adobe, Adobe Photoshop, Adobe Type Manager, Acrobat, Display PostScript, Adobe Illustra-
tor, PostScript, Distiller and PostScript 3 are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and /or other countries which may be regis-
tered in certain jurisdictions.

Commercial in Confidence

6 Interpreting the report

@L\u“‘o
Global Graphics Software Ltd is a licensee of Pantone, Inc. PANTONE" Colors generated by
ScriptWorks are four-color process simulations and may not match PANTONE-identified solid
color standards. Consult current PANTONE Color Publications for accurate color. PANTONE",

Hexachrome’, and PANTONE CALIBRATED™ are trademarks of Pantone, Inc. © Pantone, Inc.,
1991.

Other brand or product names are the registered trademarks or trademarks of their respective
holders.

US Government Use

<ProductName> software is a computer software program developed at private expense and is subject to the following
Restricted Rights Legend: “Use, duplication, or disclosure by the United States Government is subject to restrictions as set
forth in (i) FAR 52.227-14 Alt I or (ii) FAR 52.227-19, as applicable. Use by agencies of the Department of Defense (DOD) is
subject to Global Graphics Software’s customary commercial license as contained in the accompanying license agreement,
in accordance with DFAR 227.7202-1(a). For purposes of the FAR, the Software shall be deemed to be “‘unpublished’ and
licensed with disclosure prohibitions, rights reserved under the copyright laws of the United States.” Global Graphics Soft-
ware Incorporated, 5875 Trinity Parkway, Suite 110, Centreville, VA 2012.

Commercial in Confidence 18

19

Commercial in Confidence

	0 Harlequin RIP
	1 Introduction
	2 Using the error handler
	3 What’s in the procset?
	4 Configuration
	5 The error handler report
	6 Interpreting the report

